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Abstract

The difficulty of pixel-level annotation has significantly hin-
dered the development of the existing Camouflaged Object
Detection (COD) field, drawing increased attention to the
need for reducing annotation costs among researchers in this
domain. To save on annotation costs, previous works focus on
the semi-supervised COD framework that leverages a small
number of annotated data and a large volume of unlabeled
data. We argue that there is still significant room for im-
provement in the efficiency of sample utilization, primarily
focusing on the active selection of samples and the utiliza-
tion of textual modal information. To this end, this paper in-
troduces the active learning-based semi-supervised and text-
based referring COD model, dubbed TalNet. It includes an
active data selection and annotation (ADSA) module and a
text fusion module (TFM). The ADSA module selects high-
quality data for annotation through muti-feature clustering
initialization and incremental sampling strategy. The TFM
module leverages textual information to enhance the local-
ization and segmentation quality of camouflaged objects. Ex-
tensive experiments show that our method surpasses previous
semi-supervised methods in the COD field and achieves state-
of-the-art performance. Especially, our method achieved an
average improvement of 30.55% in mean absolute error com-
pared to previous methods when trained with only 1% la-
beled data, further proving the effectiveness of our proposed
method.

1 Introduction
Camouflaged object detection (COD) (Fan et al. 2020a),
(Fan et al. 2022) aims at segmenting objects that are visually
concealed in their surroundings, which has important appli-
cations in several fields (Fan et al. 2020b), (Fan et al. 2020c),
(Tabernik et al. 2019), (Le et al. 2020), (Turkoglu and Han-
bay 2019). In the field of biology, camouflage is defined as
a strategy that animals use to adapt their body’s physical ap-
pearance (e.g. texture or color) to match their surroundings
for concealment (Singh, Dhawale, and Misra 2013). Such
complex camouflaged strategies pose a huge challenge for
COD tasks. Existing methods train models by analyzing and
exploiting large amounts of data to gain the ability to locate
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Figure 1: Visual comparison between traditional semi-
supervised COD methods and our proposed TalNet. We
select high-quality data using a pool-based active learn-
ing strategy and add image-level referring text to assist the
model in localization and segmentation.

and segment camouflaged objects (Mei et al. 2021),(Le et al.
2022), (Pei et al. 2022).

However, pixel-level camouflaged object annotations are
difficult to obtain, which has plagued the advancement and
application of existing COD methods. To this end, how to re-
duce annotation costs has become a research focus in COD.
To mitigate this issue, semi-supervised COD methods (Lai
et al. 2024) emerge as a promising approach by leverag-
ing both labeled and unlabeled COD data. These methods
effectively enhance model performance in scenarios with
scarce annotations by employing data augmentation tech-
niques specifically designed for the characteristics of cam-
ouflaged objects. However, in these methods, the labeled
data is obtained through random sampling, which does not
fully take into account the quality of the selected data. Ad-
ditionally, relying solely on raw image information makes
it difficult for the model to achieve good performance with
extremely limited labeled data.

In order to select truly valuable samples for annotation
and incorporate auxiliary referring text information, which
is more readily annotated to aid in the detection of cam-
ouflaged objects, we introduce a semi-supervised referring
COD model based on active learning, termed TalNet. It in-
cludes an active data selection and annotation (ADSA) mod-



ule and a text fusion module (TFM). The ADSA module se-
lects high-quality data for annotation through multi-feature
clustering initialization and a pool-based active learning
sampling strategy so that the valuable data can be objectively
selected for annotation and training. To leverage the seman-
tic information and inherent knowledge embedded in refer-
ring text, the TFM module uses contrastive language-image
pre-training (CLIP) to encode the referring text, and then
a hierarchical shared multi-modal cross-attention is used to
fuse the image features and referring text features.

Since none of the existing mainstream COD datasets have
image-level camouflaged object referring text, this severely
hinders the research in this paper. Therefore, we first use the
vision language model (VLM) to generate annotations on
images through visual guidance and designed prompts with
contextual logic. To ensure high-quality annotations, we fur-
ther adopt manual screening and refinement to check and
correct all the referring text annotations. Finally, we have
annotated a total of 9,487 images from four datasets (e.g.
CHAMELEON (Wu, Su, and Huang 2019), CAMO (Yan
et al. 2021) (Le et al. 2019), COD10K (Fan et al. 2020a),
NC4K(Le et al. 2019)). These annotations can not only be
utilized for the research in this paper but also provide data
support for more exploration of the COD task.

To validate the effectiveness of our proposed method,
we trained models at various split ratios of labeled data
and compared their performance against existing semi-
supervised COD methods across multiple test datasets.
The experimental results conclusively demonstrate that
our method significantly outperforms all current semi-
supervised COD approaches, achieving state-of-the-art
(SOTA) levels. This robustly substantiates the efficacy of our
proposed method.

To our knowledge, our main contributions can be summa-
rized as follows:

1. We proposed a semi-supervised referring COD model
based on active learning called TalNet, which uses the
ADSA module to adaptively select valuable data and uses
TFM to integrate the semantic information produced by
referring text to enhance the model performance on cam-
ouflaged object localization of segmentation.

2. This is the first time that active learning strategies have
been introduced to the semi-supervised COD field to se-
lect better-quality data for annotation and training.

3. This is the first time that precise referring text has been
used to assist in the COD task.

4. We annotated four existing mainstream camouflage ob-
ject detection datasets with image-level camouflaged ob-
ject referring text, using a combination of VLM annota-
tion and manual refinement on 9,487 images. These an-
notations provides a data foundation for the research in
this paper and other related tasks.

5. We conducted extensive experimental validation to prove
the effectiveness of our proposed method. Especially, our
method achieved an average improvement of 30.55% in
mean absolute error compared to previous methods when
trained with only 1% labeled data and tested on all four
test sets. These results show that our method surpasses

previous semi-supervised methods in the COD field and
achieves SOTA performance.

2 Related Works
In this section, we will focus on several tasks related to our
semi-supervised referring camouflaged object detection and
introduce the dataset on which our annotation work is based.

2.1 Camouflaged Object Detection
Camouflaged Object Detection (COD) is a challenging task
that focuses on segmenting objects that are deliberately de-
signed to blend into their surroundings. It has a long history
in the field. Early methods utilized classical image process-
ing approaches and handcrafted features e.g. texture, color,
boundary, and intensity features. However, recent advances
have seen a shift towards deep learning (DL) approaches,
which have significantly improved detection rates.

Existing methods have improved the performance degra-
dation problem of the conventional salient object detection
methods in the field of COD by employing multiple strate-
gies, e.g. (Pang et al. 2022), (Pang et al. 2023), (Fan et al.
2020a), (Chou, Chen, and Shuai 2022), (Zhuge et al. 2022),
(Chen et al. 2022) extracting multi-scale features from back-
bone and designing strategies for fusion, (Fan et al. 2022),
(Jia et al. 2022), (Zhang et al. 2022), (Wang et al. 2022a),
(Lin et al. 2017) further use multi-stage refine, some other
methods introduce additional information, e.g. boundary
guidance (Sun et al. 2022a), (Ji et al. 2023a), (Zhai et al.
2021), (Zhu et al. 2022), (Zhou et al. 2022), (Sun, Jiang, and
Qi 2023), texture clues (Ji et al. 2023a), (Zhu et al. 2021),
(Ren et al. 2023), and other information such as frequency
domain and depth (Zhong et al. 2022), (Lin et al. 2023),
(Wang et al. 2023), (Xiang et al. 2021). As stated in (Zhang
et al. 2023), it is very difficult to force the network to learn
how to extract these high-quality features from limited data,
which further brings about the obfuscation problem of cam-
ouflaged object segmentation.

2.2 Semi-Supervised Learning
In traditional fully-supervised learning, models require ex-
tensive labeled data for training to achieve optimal perfor-
mance. However, obtaining labeled data in practical applica-
tions is often costly and time-consuming. Semi-supervised
learning (SSL) enhances the model’s generalization capabil-
ity by combining labeled data and unlabeled data (Chen et al.
2023), (Grandvalet and Bengio 2004), (Lee 2013), (Mi et al.
2022), (Oliver et al. 2018), (Berthelot et al. 2022), (Sohn
et al. 2020a), (Tarvainen and Valpola 2017), (Wang et al.
2021), which effectively addresses the challenges of acquir-
ing labeled data. Some previous works (Chen et al. 2021),
(Sohn et al. 2020b), (Wang et al. 2022b), (Xu et al. 2021),
(Yang et al. 2022) introduce the pseudo-labeling mecha-
nism, where a teacher model is trained using a small amount
of labeled data, and then the teacher model is used to pro-
duce the pseudo labels of the unlabeled data for the subse-
quent training of the student model. Semi-supervised learn-
ing has shown significant potential in various fields. Re-
cently, some methods (Lai et al. 2024) have applied SSL to
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Figure 2: Main framework of the proposed TalNet. It includes an ADSA module and a TFM module. The ADSA module uses
pool-based active learning to select high-quality data, and the TFM module employs hierarchical shared multi-modal cross-
attention to fuse the image features and referring text features.

the field of COD, significantly improving the performance
of the COD models under limited labeled data training sce-
narios.

2.3 Active Learning
Active learning in the context of deep learning is a strat-
egy designed to reduce the labeling cost by allowing the
model to selectively query the most informative samples
from an unlabeled dataset for annotation. It is particularly
useful in scenarios where data labeling is expensive, time-
consuming, or requires expert knowledge. AL approaches
can be divided into membership query synthesis (Angluin
1988), (King et al. 2004), stream-based selective sampling
(Argamon-Engelson and Dagan 1999) , and pool-based AL
from application scenarios (Settles 2009). In pool-based ac-
tive learning, (Sinha, Ebrahimi, and Darrell 2019) utilized a
variational autoencoder (VAE) and an adversarial network to
learn a latent space that distinguishes between unlabeled and
labeled data. This adversarial approach effectively learns a
low-dimensional latent space in large-scale settings and pro-
vides a computationally efficient sampling method.

2.4 Referring Expression Segmentation
Referring Expression Segmentation (RES) aims at labeling
the pixels of the given image that represent an object re-
ferred to by natural language description. This task is cru-
cial for visual understanding and human-computer interac-

tion because it merges the understanding of visual content
with the parsing of linguistic instructions.

Existing methods are categorized into two types: fully
supervised and weakly supervised methods. Among them,
fully-supervised methods are solved by using joint-
embedding (Nagaraja, Morariu, and Davis 2016), (Hu et al.
2016b), (Yu et al. 2016), (Luo and Shakhnarovich 2017),
modular network (Hu et al. 2016a), (Liu et al. 2019a), graph-
based methods (Wang et al. 2018), (Yang, Li, and Yu 2019),
(Liu et al. 2019b), (Yang, Li, and Yu 2020), and pretrained
language model. Recently, with the rise of the contrastive
language-image pretraining (CLIP) model (Radford et al.
2021), some methods have employed the CLIP model to ob-
tain image features and text embeddings. We use a CLIP
text encoder to encode the caption of the camouflaged ob-
ject as the referring information to assist in localization and
segmentation.

2.5 Referring Camouflaged Object Detection
The concept of Referring Camouflaged Object Detection
(Ref-COD) was first proposed by (Zhang et al. 2023), which
leverages a batch of images as the referring information to
guide the identification of the specified camouflaged objects.
With the development of MLLMs, the rich intrinsic knowl-
edge that MLLMs learned from massive amounts of data
can be used to augment a variety of downstream tasks. Re-
cently works (Cheng et al. 2023), (Hu et al. 2024) have ex-



tended this concept by utilizing MLLMs and designing a se-
ries of prompts to assist the COD task. There is no doubt that
the usage of MLLMs does bring performance improvement,
but they are not designed for COD task (Ji et al. 2023b), if
MLLMs thenselves fail to localize the camouflaged object
in the image, then the reference information provided intro-
duces noise, which will bring about a performance degrada-
tion. We mainly focus on how to use the precise referring
text to assist the semi-supervised COD model in more accu-
rately localizing and segmenting camouflaged objects.

3 Proposed Method
3.1 Formulation
Camouflaged Object Detection (COD) is a challenging task
that aims to segment objects that are visually hidden in their
surroundings. Semi-supervised COD further increases the
challenge and difficulties and challenges of this task. It lever-
age a limited amount of annotated data to train a detector that
is still capable of identifying objects that seamlessly blend
into their surroundings. Our method aims to select high-
quality data adaptively and integrate referring text to assist
in localizing and segmenting the camouflaged object. We as-
sume that none of the images in the training set have any an-
notation(i.e. both segmentation mask and referring text), and
we will expand it by incrementally selecting data. In partic-
ular, all images in original training set Salltrain are represented
as Iini ∈ R3×H×W , i ∈ [1, |Sall

train|], where H,W denote the
height and width of the image, | · | denote the size of the
set. If the i-th image is selected for actual training, its cor-
responding referring text and semantic segmentation masks
are denoted as Tref

i ,Mseg
i ∈ R1×H×W . All annotated refer-

ring text have several words less than or equal to 64.

3.2 Overall Framework
As shown in Fig. 2, we adopt the teacher-student paradigm
as a preliminary to construct the semi-supervised COD
framework. The framework consists of two similar models
and an Active Data Selection and Annotation (ADSA) mod-
ule. The ADSA module uses multi-feature clustering strate-
gies to initialize labeled data and then uses active-learning-
based methods to select high-quality data incrementally. We
expect the teacher model to quickly learn the fundamental
knowledge about camouflaged objects and initially possess
the ability to locate these objects. Therefore, in the teacher
model, we employ a simple encoder-decoder structure that
learns only from the selected labeled data and generates
pseudo-label predictions for the unlabeled data. For the stu-
dent model, we expect it to fully utilize the knowledge from
the teacher model and, combined with the semantic informa-
tion in referring text to achieve more accurate localization
and segmentation. To this end, we incorporate a designed
Text Fusion Module (TFM) to fuse the semantic informa-
tion with hierarchical image features and use a pseudo-label
distillation loss to transfer the knowledge from the teacher
model to the student model. The overall loss function Ltot

can be termed as:

Ltot = Ls + Lus + LADSA (1)

where Ls and Lus denote supervised loss and unsupervised
loss respectively, LADSA denotes the loss of ADSA mod-
ule. Following the previous work, we use the combination
of binary cross-entropy loss LBCE, intersection over union
loss LIoU, and structure similarity index measure LSSIM in
supervised loss:

Ls = Ltea
GT + Lstu

GT

LGT = λ1LBCE + λ2LIoU + λ3LSSIM
(2)

where λ1, λ2, and λ3 are respectively set to 30, 0.5, and 10
following (Zheng et al. 2024) to keep all the losses on the
same quantitative level. For unsupervised loss, we used the
same loss as LGT for hard pseudo-label distillation. Addi-
tionally, we perform distillation on the intermediate features
of the decoder. Sepcifically, we generate segmentation mask
ŷteai,j , ŷ

stu
i,j using the j-th intermediate features of the teacher

and student model for the i-th input image. The mask gen-
erated by the teacher model ŷteai,j is used as a pseudo label to
supervise the mask produced by the student model. We use
only the LBCE for distilling these intermediate features. The
final unsupervised loss can be termed as:

Lus = Lf + Ll

Lf = λ1Lf
BCE

Ll = λ1Ll
BCE + λ1Ll

IoU + λ1Ll
SSIM

(3)

where Lf ,Ll denotes the distillation loss of student model.
The complete definition of loss function LBCE,LIoU,LSSIM

can be found at supplementary materials.

3.3 Referring Text Annotations
Since none of the existing datasets have image-level refer-
ring text, we annotate four existing mainstream datasets first.
Based on a series of pre-existing datasets, we can focus more
on the task of annotating the image without having to collect
camouflaged images from scratch.

To achieve a fair, easy, and effective comparison with
existing methods, we expect to be able to construct text-
based referring camouflaged object detection experiments
in as similar settings as possible. Referring to (Chen et al.
2022), (Fan et al. 2022) , we decided to use the mainstream
COD datasets: CHAMELEON (Wu, Su, and Huang 2019),
CAMO (Yan et al. 2021) (Le et al. 2019), COD10K (Fan
et al. 2020a), NC4K(Le et al. 2019)) as the base image
data. Similarly, the aforementioned dataset does not contain
image-level referring text that cannot be applied to our pro-
posed methods. Therefore, we first need to annotate these
datasets.

Annotating camouflaged objects with captions is an ex-
tremely time-consuming and labor-intensive task, and man-
ual annotating tends to lead to inconsistent labeling qual-
ity. To ensure that the camouflaged object captions contain
meaningful information for COD task i.e. texture, color, and
shape, we used a vision language model (VLM) to generate
a summary first, then we manually filtered and refined it to
obtain an annotation that better meets our expectations.

For the selection of VLM models, we used QwenVL (Bai
et al. 2023) and GPT4-Vision (OpenAI 2024), both of which



support multiple vision inputs and serve as our annotations
models. Since the visual language model is not designed for
COD tasks, to avoid the annotation quality being affected
by the VLM’s camouflaged object localization and compre-
hension ability, we directly use the ground-truth mask corre-
sponding to the input image to segment the foreground ob-
ject and guide the model for annotation step by step. Specif-
ically, we design a series of prompts with contextual logic:
1). First, the VLM model will be guided to locate the ob-
ject and justify its classes; 2). Then, the model is directed
to characterize the physical properties of foreground objects
and background. 3). Finally, we request the model to ag-
gregate and streamline all the features to generate complete
camouflaged object captions.

Finally, we employed manual screening and conducted a
thorough review and revision of all annotations to ensure
their accuracy and high quality. As a result, we annotated a
total of 9,487 images from four datasets. The prompt used in
the above process, the whole pipeline, and all referring text
annotations will be provided in the supplementary materials.

3.4 Active Data Selection and Annotation Module
To solve the issue that previous semi-supervised COD mod-
els couldn’t actively select high-quality samples, we intro-
duce an ADSA module for active sample selection and anno-
tation simulation. In the initialization phase, we aim to select
samples that are as diverse and representative as possible.
Considering that camouflaged objects usually exhibit unique
characteristics in texture(Ji et al. 2023a), (Zheng et al. 2024),
(Ren et al. 2023), (Zhu et al. 2021), edges(Sun, Jiang, and
Qi 2023), (Sun et al. 2022b), (Zhai et al. 2021), (Zhu et al.
2022), and the frequency domain(Luo et al. 2023), we ex-
tract the gray-level co-occurrence matrix(GLCM) from the
original images as the texture feature, use the Sobel oper-
ator to extract edge features, and apply Fourier transform
to extract frequency domain features. After reducing the di-
mensionality with the PCA algorithm, we perform K-Means
clustering and select the image samples closest to the cluster
centers as the initial labeled data.

For the incremental sampling strategy, we adopted the
pool-based active learning method (Sinha, Ebrahimi, and
Darrell 2019), employing a Variational Autoencoder(VAE)
and an adversarial network to learn the latent space, aiming
to distinguish between labeled and unlabeled data. The VAE
model attempts to deceive the adversarial network into pre-
dicting that all data originate from the labeled pool; while
the adversarial network learns to differentiate dissimilarities
within the latent space. We employ the aforementioned strat-
egy for incremental sampling, expanding from 1% of labeled
data to 5% and 10%. The loss function of the ADSA module
can be termed as:

LADSA = LVAE + LD

LVAE = Ltrd
VAE + Ladv

VAE

(4)

where LVAE denotes the total VAE loss, which includes the
training loss Ltrd

VAE and adversarial loss Ladv
VAE. For a detailed

definition of the above losses, please refer to the supplemen-
tary materials.

3.5 Text Fusion Module
To leverage the semantic intelligence and inherent knowl-
edge of MLLMs to enhance the localization and segmen-
tation quality of camouflaged objects, we propose a TFM
module to align and aggregate image features with referring
text features and produce semantically rich features that can
be used in subsequent decoders. We encode the input refer-
ring text using CLIP text encoder to obtain textual features
FText
i :

FText
i = CLIPT(T

ref
i ) (5)

where CLIPT denotes the CLIP text encoder. Subsequently,
we use two linear layers to map these text features into key
and value vectors for use in attention calculations. The effec-
tiveness of hierarchical features in COD has been shown in
previous works (Huang et al. 2023), (Jia et al. 2022), (Sun,
Jiang, and Qi 2023), (Zheng et al. 2024), (Zhu et al. 2022),
(Zhu et al. 2021), (Ren et al. 2023). We aim to facilitate in-
formation exchange between hierarchical features while en-
gaging in cross-modal feature interactions. To achieve this,
we employ a hierarchical shared multi-head cross-attention
mechanism. Specifically, we first use 1 × 1 convolutions to
align the channels of hierarchical features. Then, we use a
linear layer to obtain the query vector. Finally, the query,
key, and value vectors pass through a multi-head attention
layer, resulting in semantically rich features {Fattn

i,j }Mj=1:

Fattn
i,j = MultiHeadAttn(Q,K, V ) (6)

where Q,K, V denotes the query, key, and value vectors as
previously described, and M denote the number of hierar-
chical features. The semantically rich features will be uti-
lized in the subsequent decoder to generate the segmentation
masks.

4 Experiments
4.1 Experiment Settings
Training Set. To compare with the existing works, follow-
ing (Luo et al. 2023), (Fan et al. 2020a), we used 1000 im-
ages from the CAMO trainset and 3040 images from the
COD10K trainset as the training set for our experiments.
During the training process, we followed the data partition
ratios from previous semi-supervised camouflaged object
detection results, training the model with 1%, 5%, and 10%
of labeled data. However, diverging from traditional semi-
supervised segmentation approaches, we didn’t employ a
random data sampling strategy. Instead, we utilized the pro-
posed ADSA module to actively select the valuable data and
simulate annotating labels(i.e. segmentation mask and refer-
ring text), while the remaining portion was treated as unla-
beled data. For all unlabeled data, the referring text is fixed
to a single sentence “A camouflaged object in the picture”.
Testing Sets. We test the model’s performance on four main-
stream COD benchmark testing sets, CHAMELEON with
76 test images, CAMO with 250 test images, COD10K with
2026 test images, and NC4K with 4121 test images. To com-
prehensively evaluate the model, we tested its performance
under two different settings: using fixed referring text (i.e.
“A camouflaged object in the picture”) and using precise
image-level referring text on all text images.



CHAMELEON (76)

Methods 1% (41) 5% (202) 10% (404)
Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓

Mean Teacher (Lai et al. 2024) 0.537 0.199 0.229 0.418 0.636 0.204 0.611 0.309 0.353 0.524 0.745 0.137 0.679 0.450 0.512 0.650 0.812 0.102
CamoTeacher (Lai et al. 2024) 0.652 0.472 0.558 0.714 0.762 0.093 0.729 0.587 0.656 0.785 0.822 0.070 0.756 0.617 0.684 0.813 0.851 0.065

TalNet † 0.716 0.58 0.656 0.731 0.816 0.064 0.817 0.744 0.794 0.878 0.899 0.044 0.844 0.762 0.801 0.893 0.914 0.040
TalNet ‡ 0.772 0.673 0.733 0.834 0.885 0.053 0.827 0.759 0.802 0.886 0.896 0.041 0.849 0.783 0.814 0.903 0.914 0.037

CAMO (250)

Methods 1% (41) 5% (202) 10% (404)
Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓

Mean Teacher (Lai et al. 2024) 0.518 0.207 0.227 0.399 0.620 0.226 0.575 0.286 0.322 0.482 0.708 0.184 0.625 0.397 0.454 0.578 0.773 0.150
CamoTeacher (Lai et al. 2024) 0.621 0.456 0.545 0.669 0.736 0.136 0.669 0.523 0.601 0.711 0.775 0.122 0.701 0.560 0.635 0.742 0.795 0.112

TalNet † 0.608 0.432 0.511 0.604 0.695 0.130 0.695 0.578 0.650 0.716 0.750 0.108 0.775 0.692 0.750 0.831 0.855 0.086
TalNet ‡ 0.684 0.557 0.633 0.720 0.784 0.113 0.723 0.622 0.688 0.752 0.771 0.098 0.782 0.718 0.768 0.841 0.853 0.080

COD10K (2026)

Methods 1% (41) 5% (202) 10% (404)
Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓

Mean Teacher (Lai et al. 2024) 0.546 0.168 0.226 0.441 0.633 0.161 0.621 0.272 0.343 0.555 0.732 0.107 0.683 0.404 0.482 0.666 0.799 0.078
CamoTeacher (Lai et al. 2024) 0.699 0.517 0.582 0.788 0.797 0.062 0.745 0.583 0.644 0.827 0.840 0.050 0.759 0.594 0.652 0.836 0.854 0.049

TalNet † 0.693 0.511 0.587 0.715 0.805 0.050 0.790 0.689 0.745 0.851 0.885 0.036 0.820 0.712 0.759 0.885 0.901 0.034
TalNet ‡ 0.764 0.623 0.676 0.835 0.861 0.042 0.801 0.706 0.757 0.860 0.883 0.033 0.825 0.737 0.777 0.888 0.901 0.030

NC4K (4121)

Methods 1% (41) 5% (202) 10% (404)
Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓ Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓

Mean Teacher (Lai et al. 2024) 0.541 0.213 0.258 0.424 0.637 0.193 0.634 0.355 0.420 0.556 0.767 0.140 0.700 0.492 0.565 0.670 0.827 0.109
CamoTeacher (Lai et al. 2024) 0.718 0.599 0.675 0.779 0.814 0.090 0.777 0.677 0.739 0.834 0.859 0.071 0.791 0.687 0.746 0.842 0.868 0.068

TalNet † 0.726 0.616 0.690 0.766 0.819 0.076 0.809 0.744 0.797 0.861 0.883 0.055 0.834 0.759 0.801 0.884 0.899 0.051
TalNet ‡ 0.786 0.696 0.746 0.848 0.866 0.063 0.822 0.763 0.809 0.875 0.890 0.050 0.840 0.784 0.819 0.901 0.901 0.046

Table 1: Quantitative comparison with existing methods on four COD benchmark testing sets includes CHAMELEON, CAMO,
COD10K and NC4K. We provide experimental results under two test settings: † indicates that all test images used fixed referring
text(i.e. “A camouflaged object in the picture.”), and ‡ indicates that all images used precise referring text.

Evaluation Protocol. For a fair and comprehensive eval-
uation, we employed the S-measure (Sm) (Fan et al.
2017), mean and weighted F-measure (Fm

β , Fω
β ) (Margolin,

Zelnik-Manor, and Tal 2014), max and mean E-measure (Ex
ϵ ,

Em
ϵ ) (Fan et al. 2018), mean absolute error (M) (Perazzi

et al. 2012).

4.2 Implementation Details

All images are resized to 1024×1024 for training and test-
ing. The output segmentation masks are resized to the orig-
inal size of the corresponding ground-truth masks by bi-
linear interpolation. We employ the Pyramid Vision Trans-
former(PVT) as our image encoder, use recently developed
BiRefBlock (Zheng et al. 2024) from High-Resolution Di-
chotomous Image Segmentation(HR-DIS) fields to build the
decoder, and we use CLIP-ViT-Large as our text encoder.
The parameters of the CLIP text encoder are frozen during
the training process, while all others are trainable. All ex-
periments are implemented with PyTorch 2.1 and are run
on a machine with Intel(R) Xeon(R) Silver 4214R CPU @
2.40GHz, 256GiB RAM, and two NVIDIA Titan A100-40G
GPUs. The batch size is set to 2 for each GPU during train-
ing. All experiments use the same random seed. More im-
plementation details will be provided in the supplementary
materials.

4.3 Qualitative Analysis
In Fig. 3, we present a visual comparison of our TalNet
trained on different labeled data split ratios (i.e. 1%, 5%,
10%) . We select various typical and challenging camou-
flaged images and arrange them in order of camouflaged
object size, from smallest to largest. With the assistance of
referring text, the model can locate highly camouflaged ob-
jects even when trained with only 1% labeled training data.
As the amount of labeled training data increases, the edges
of these camouflaged objects becomes progressively clearer.

4.4 Quantitative Analysis
In Tab. 1, we compared the proposed TalNet with two exist-
ing semi-supervised camouflaged object detection methods.
To more comprehensively demonstrate the performance of
our model, we used two different settings during testing: us-
ing fixed referring text (i.e. “A camouflaged object in the
picture”) and using precise referring text(i.e. image-level re-
ferring text annotation). As presented in Tab. 1, benefiting
from the high-quality samples selected by the ADSA mod-
ule and the auxiliary role of referring text during training,
our method has reached a new state-of-the-art level. Even
when using fixed referring text during testing, our method
surpasses previous methods across all metrics on all testing
sets. If precise referring text is further incorporated during
testing, our method can achieve even greater performance
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Figure 3: Visual comparisons of the proposed TalNet trained
with different labeled data split ratios: 1%, 5%, and 10%. We
used precise referring text for evaluation, and all unlabeled
data used fixed referring text during the training phase.

improvements. For instance, when using precise referring
text during testing as opposed to fixed referring text, our
method shows an improvement of 0.017 in the mean abso-
lute error(M) on the CAMO testing set and 0.013 on the
NC4K testing set, even when trained with only 1% labeled
data.

4.5 Ablation Study

Ablation of the proposed modules. We demonstrated the
effectiveness of three modules: semi-supervised learning
framework, ADSA module, and TFM. For all experimen-
tal groups that didn’t use the ADSA module, we randomly
selected 5% of the training set as labeled data and added
annotations. For referring text, all experimental groups us-
ing TFM applied fixed referring text for unlabeled data dur-
ing training and all data during testing. As shown in Tab.
2, we have proved the superiority of our methods. The pro-
posed ADSA module effectively enhances the model’s per-
formance by selecting high-quality data, while the TFM
fully utilizes the additional information contained in the text
to assist the model in more accurately locating and segment-
ing camouflaged objects.
Ablation of the referring text. We further study the im-
pact of referring text on model performance. We retrained
the model in two different settings (using fixed referring text
and using precise referring text) during the training and test-
ing phases. As shown in Tab. 3, almost all performance met-
rics showed improvements under the setting of using precise
referring text, which further proves the referring text could
help the model better locate and segment the camouflaged
object.

For more ablation study details and results, please refer to
the supplementary materials.

Components COD10K (2026)
SSL ADSA TFM Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓

✓ 0.785 0.671 0.703 0.844 0.852 0.042
✓ 0.789 0.682 0.731 0.856 0.872 0.040

✓ 0.789 0.681 0.734 0.853 0.877 0.039
✓ ✓ 0.786 0.670 0.719 0.848 0.864 0.040

✓ ✓ 0.793 0.686 0.735 0.851 0.875 0.038
✓ ✓ ✓ 0.790 0.689 0.745 0.851 0.885 0.036

Table 2: Ablation study to evaluate the effectiveness of dif-
ferent components in our proposed method, including Semi-
Supervised Learning framework (SSL), Active Data Se-
lection and Annotation (ADSA), and Text Fusion Module
(TFM). We use 5% labeled data to train the model and test
on COD10K-testset with fixed referring text.

Train Test COD10K (2026)
Fixed. Precise. Fixed. Precise. Sm ↑ Fω

β ↑ Fm
β ↑ Em

ϕ ↑ Ex
ϕ ↑ M ↓

✓ ✓ 0.790 0.689 0.745 0.851 0.885 0.036
✓ ✓ 0.801 0.706 0.757 0.860 0.883 0.033

✓ ✓ 0.771 0.667 0.736 0.814 0.847 0.038
✓ ✓ 0.808 0.718 0.769 0.870 0.980 0.033

Table 3: Ablation study to evaluate the different settings on
referring text. We retrained the model on 5% data with fixed
and precise referring text, then tested on COD10K-test set
with fixed and precise referring text.

5 Conclusions
In this paper, we address the shortcomings of existing semi-
supervised COD methods, which fail to actively select and
utilize high-quality data, resulting in poor performance. We
introduce a semi-supervised and text-based referring COD
model with active learning, TalNet, to address this issue.
This model incorporates an active learning module that uses
multi-feature clustering initialization and incremental sam-
pling strategies to adaptively select high-quality samples for
annotation. Additionally, we aim to leverage the semantic
intelligence and inherent knowledge of MLLMs to assist in
accurately localizing and segmenting camouflaged objects,
thus maximizing the usage of annotated data. To this end, we
further introduce a text fusion module that fuses semantic in-
formation from referring text and image features through a
hierarchical shared multi-modal cross-attention mechanism.

Extensive experiments show that our approach outper-
forms previous semi-supervised methods in the COD field.
Specifically, our method achieved an average improvement
of 30.55% in mean absolute error (MAE) compared to pre-
vious methods when trained with only 1% labeled data,
a 31.17% MAE improvement when trained with 5% la-
beled data, and a 35.69% MAE improvement when trained
with 10% labeled data. These experimental results demon-
strate that our strategies significantly enhance the detec-
tion accuracy of COD models. Additionally, our precise
image-level referring text annotations for existing main-
stream datasets(i.e. CHAMELEON, CAMO, COD10K, and
NC4K) could provide a solid data foundation for subsequent
COD-related research.
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